
Flow Chemistry
Flow chemistry, sometimes referred to as plug flow, microchemistry or
continuous flow chemistry is the process of performing chemical reactions in a tube or pipe.
Reactive components are pumped together at a mixing junction and flowed down a temperature controlled
pipe or tube.
The major advantages of flow chemistry are faster reactions, cleaner products, safer reactions, quick reaction optimization, easy scale-up, and the integration of typically separate processes - such as synthesis,
work-up and analysis.
Syrris is the world’s longest established provider of lab scale flow chemistry systems. These systems are called Asia, Africa and FRX and allow easy access to the benefits of flow chemistry.
We are authorized distributor of Syrris products in Poland.

The Benefits of Flow Chemistry
Faster Reactions
Mixing of liquids in a Syrris glass microreactor
Flow reactors are easily pressurized (e.g. Asia systems can be pressurized to 300psi). This allows reactions to be heated 100-150°C above their normal boiling point, therefore creating reaction rates that are 1000s of times faster.

Cleaner Products
Flow reactors enable excellent reaction selectivity. The rapid diffusion mixing avoids the issues found in batch reactors. The high surface area to volume ratio (1000x greater than a batch reactor) enables almost instantaneous heating or cooling and therefore ultimate temperature control.
Safer Reactions
Flow chemistry allows only a small amount of hazardous intermediate to be formed at any instant. The high surface area also allows excellent control of exotherms.
Integrated Synthesis, Work-up and Analysis
Reaction products exiting a flow reactor can be flowed into a flow aqueous work-up system or solid phase scavenger column. From there they can be analysed either in line (e.g. FTIR) or a sample taken, using a sampler and dilutor then and injected onto and LCMS.
Rapid Reaction Optimization
Flow Chemistry with automation enables the quick variation of reaction conditions on a very small scale e.g. 100µl. Parameters such as reaction time, temperature, ratio of reagents, concentration and reagents themselves can all be rapidly varied. One reaction can follow another, separated by solvent, each cleaning out the previous reaction.
Easy Scale-Up
Scale up issues are minimized due to maintaining excellent mixing and heat transfer. Higher flow rates and correspondingly larger reactors can be used to easily produce kilogram quantities.
Reaction Conditions Not Possible in Batch
Flow chemistry facilitates reaction conditions not possible in batch such as a 5 second reaction at 250ºC. Multi step procedures such as a rapid low temperature deprotonation followed instantaneously by the addition of an electrophile high temperature are made easy.
Example of Flow Chemistry System utilizing micro-reactors
